If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(9/41)^2=x
We move all terms to the left:
(9/41)^2-(x)=0
We add all the numbers together, and all the variables
-x+(+9/41)^2=0
We add all the numbers together, and all the variables
-1x+(+9/41)^2=0
We multiply all the terms by the denominator
-1x*41)^2+(+9=0
Wy multiply elements
-41x^2+9=0
a = -41; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-41)·9
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{41}}{2*-41}=\frac{0-6\sqrt{41}}{-82} =-\frac{6\sqrt{41}}{-82} =-\frac{3\sqrt{41}}{-41} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{41}}{2*-41}=\frac{0+6\sqrt{41}}{-82} =\frac{6\sqrt{41}}{-82} =\frac{3\sqrt{41}}{-41} $
| 6n^2+17=1553 | | 22x-5=10x-5 | | 6n^2+17=1367 | | 6n^2+17=1193 | | x(3x-6)=(3x+4)(x-2) | | 6n^2+17=1031 | | 3-6(6-4x)=0 | | 6n^2+17=881 | | 6n^2+17=743 | | 6n^2+17=617 | | 2.v/4-10=15 | | 6*n^2+17=401 | | 6n^2+17=503 | | 5-2(8x+6)=4 | | 5z-4z-4=-7 | | 6n^2+17=311 | | 6n^2+17=233 | | ((3x+4)/7x)+5=6/x | | x-0.25x=40.5 | | 6n^2+17=167 | | 6(5p+40-16=-20 | | 6n^2+17=113 | | 5(3x-1)/2=20 | | 6n^2+17=71 | | 6n^2+17=41 | | 6*n^2+17=23 | | 5(w+3)=8(w+6) | | 5=6(q-5(-19 | | 6n^2+17=23 | | 4/5x+12=-8 | | -v(-4)=-16(4)^2+3 | | 5(3x-4)=2(5x+10) |